Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pathol Res Pract ; 248: 154716, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37523804

RESUMEN

BACKGROUND: Colorectal cancer (CRC), the fourth of the world's major common malignancy, poses a serious threat to the physical and mental health of the population. Nevertheless, the prognosis of CRC patients remains unsatisfactory. Consequently, it is still imperative to continuously discover the CRC mechanisms. METHODS: The expression profiles of mRNAs were recognized by whole transcriptome sequencing to identity differentially expressed mRNA (DE-mRNA). TCGA COAD cohort, PPOGgene and Kaplan-Meier Plotter databases were utilized to validate RNF114 relevance to CRC prognosis. The effect of RNF114 on the malignant biological behavior of CRC was explored in CRC cells and subcutaneous tumor models and lung metastasis model after exogenous regulation of RNF114. RESULTS: A total of 1358 DE-mRNAs were identified, including 617 up-regulated and 741 down-regulated DE-mRNAs, and they were mainly involved in the term of receptor ligand activity, Wnt signaling pathway and pathway in cancer. Notably, RNF114 was hyper-expressed in tissues and cell of CRC, and significantly correlated with tumor invasion depth and TNM stage of CRC patients. RNF114 expression were significantly associated with overall survival, and had superior diagnostic value in CRC. In vitro, knockdown of RNF114 statistically diminished the proliferation, stemness, invasion and wound healing of CRC cells and facilitated their apoptosis, and the opposite result was observed for overexpression of RNF114. In vivo, knockdown of RNF114 effectively diminished the mass and volume of tumors, and lung metastasis in animal model. CONCLUSIONS: In summary, we identified DE-mRNAs in CRC, and elucidated that RNF114 facilitates CRC process. The discovery will contribute to theoretical foundation for RNF114 as a potential therapeutic target and biomarker, and offer new perspectives for CRC research.


Asunto(s)
Neoplasias Colorrectales , Vía de Señalización Wnt , Animales , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Neoplasias Colorrectales/patología , Regulación Neoplásica de la Expresión Génica , ARN Mensajero
2.
Int J Gen Med ; 15: 4195-4208, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35480991

RESUMEN

Background: Ketamine is famous for its dissociative anesthetic properties. It is also analgesic, anti-inflammatory and anti-depressant, and even has a cerebral protective effect. We searched the evidence of the correlation between ketamine target and clinical efficacy and utilized network pharmacology to gather information about the multi-target mechanism of ketamine against cerebral ischemia (CI). We found that ketamine's clinical significance may be more extensive than previously thought. Methods: The drug target of ketamine and CI-related genes were predicted by SwissTargetPrediction, DrugBank, PubChem, GeneCards and DisGeNET databases. The intersection of ketamine's drug-targets and CI-related genes was analyzed by using GO and KEGG. We predicted the molecular docking between the potential target and ketamine. Results: The results indicated that the effect of ketamine on CI was primarily associated with the target of α-synuclein (SNCA), muscarinic acetylcholine receptor M1 (CHRM1) and nitric oxide synthase 1 (NOS1). It principally regulates the signal pathways of circadian transmission, calcium signaling pathway, dopaminergic synapse, cholinergic synapse and glutamatergic synapse. Molecular docking analysis exhibited that hydrogen bond and Pi-Pi interaction were the predominant modes of interaction. Conclusion: There are protein targets affected by ketamine in the treatment of CI. Three pivotal targets involving 298 proteins, SNCA, CHRM1 and NOS1, have emerged as multi-target mechanisms for ketamine in CI therapy. Similarly, this study also provides a new idea for introducing network pharmacology into the evaluation of multi-targeted drugs for CI and cerebral protection.

3.
Appl Environ Microbiol ; 88(7): e0167721, 2022 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-35285716

RESUMEN

Vibrio collagenases of the M9A subfamily are closely related to Vibrio pathogenesis for their role in collagen degradation during host invasion. Although some Vibrio collagenases have been characterized, the collagen degradation mechanism of Vibrio collagenase is still largely unknown. Here, an M9A collagenase, VP397, from marine Vibrio pomeroyi strain 12613 was characterized, and its fragmentation pattern on insoluble type I collagen fibers was studied. VP397 is a typical Vibrio collagenase composed of a catalytic module featuring a peptidase M9N domain and a peptidase M9 domain and two accessory bacterial prepeptidase C-terminal domains (PPC domains). It can hydrolyze various collagenous substrates, including fish collagen, mammalian collagens of types I to V, triple-helical peptide [(POG)10]3, gelatin, and 4-phenylazobenzyloxycarbonyl-Pro-Leu-Gly-Pro-o-Arg (Pz-peptide). Atomic force microscopy (AFM) observation and biochemical analyses revealed that VP397 first assaults the C-telopeptide region to dismantle the compact structure of collagen and dissociate tropocollagen fragments, which are further digested into peptides and amino acids by VP397 mainly at the Y-Gly bonds in the repeating Gly-X-Y triplets. In addition, domain deletion mutagenesis showed that the catalytic module of VP397 alone is capable of hydrolyzing type I collagen fibers and that its C-terminal PPC2 domain functions as a collagen-binding domain during collagenolysis. Based on our results, a model for the collagenolytic mechanism of VP397 is proposed. This study sheds light on the mechanism of collagen degradation by Vibrio collagenase, offering a better understanding of the pathogenesis of Vibrio and helping in developing the potential applications of Vibrio collagenase in industrial and medical areas. IMPORTANCE Many Vibrio species are pathogens and cause serious diseases in humans and aquatic animals. The collagenases produced by pathogenic Vibrio species have been regarded as important virulence factors, which occasionally exhibit direct pathogenicity to the infected host or facilitate other toxins' diffusion through the digestion of host collagen. However, our knowledge concerning the collagen degradation mechanism of Vibrio collagenase is still limited. This study reveals the degradation strategy of Vibrio collagenase VP397 on type I collagen. VP397 binds on collagen fibrils via its C-terminal PPC2 domain, and its catalytic module first assaults the C-telopeptide region and then attacks the Y-Gly bonds in the dissociated tropocollagen fragments to release peptides and amino acids. This study offers new knowledge regarding the collagenolytic mechanism of Vibrio collagenase, which is helpful for better understanding the role of collagenase in Vibrio pathogenesis and for developing its industrial and medical applications.


Asunto(s)
Colágeno Tipo I , Vibrio , Secuencia de Aminoácidos , Aminoácidos , Animales , Colágeno/metabolismo , Colágeno Tipo I/genética , Colagenasas/genética , Colagenasas/metabolismo , Mamíferos , Péptidos/metabolismo , Tropocolágeno , Vibrio/metabolismo
4.
Nat Commun ; 13(1): 566, 2022 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-35091565

RESUMEN

The collagenases of Vibrio species, many of which are pathogens, have been regarded as an important virulence factor. However, there is little information on the structure and collagenolytic mechanism of Vibrio collagenase. Here, we report the crystal structure of the collagenase module (CM) of Vibrio collagenase VhaC and the conformation of VhaC in solution. Structural and biochemical analyses and molecular dynamics studies reveal that triple-helical collagen is initially recognized by the activator domain, followed by subsequent cleavage by the peptidase domain along with the closing movement of CM. This is different from the peptidolytic mode or the proposed collagenolysis of Clostridium collagenase. We propose a model for the integrated collagenolytic mechanism of VhaC, integrating the functions of VhaC accessory domains and its collagen degradation pattern. This study provides insight into the mechanism of bacterial collagenolysis and helps in structure-based drug design targeting of the Vibrio collagenase.


Asunto(s)
Proteínas Bacterianas/química , Colágeno/metabolismo , Colagenasas/química , Conformación Proteica , Vibrio/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión/genética , Biocatálisis , Cromatografía Liquida , Colagenasas/genética , Colagenasas/metabolismo , Cristalografía por Rayos X , Espectrometría de Masas , Microscopía de Fuerza Atómica , Simulación de Dinámica Molecular , Péptidos/genética , Péptidos/metabolismo , Unión Proteica , Vibrio/enzimología , Vibrio/genética
5.
Mar Drugs ; 19(12)2021 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-34940675

RESUMEN

Bovine bone is rich in collagen and is a good material for collagen peptide preparation. Although thermolysin-like proteases (TLPs) have been applied in different fields, the potential of TLPs in preparing bioactive collagen peptides has rarely been evaluated. Here, we characterized a thermophilic TLP, A69, from a hydrothermal bacterium Anoxybacillus caldiproteolyticus 1A02591, and evaluated its potential in preparing bioactive collagen peptides. A69 showed the highest activity at 60 °C and pH 7.0. We optimized the conditions for bovine bone collagen hydrolysis and set up a process with high hydrolysis efficiency (99.4%) to prepare bovine bone collagen peptides, in which bovine bone collagen was hydrolyzed at 60 °C for 2 h with an enzyme-substrate ratio of 25 U/g. The hydrolysate contained 96.5% peptides that have a broad molecular weight distribution below 10000 Da. The hydrolysate showed good moisture-retention ability and a high hydroxyl radical (•OH) scavenging ratio of 73.2%, suggesting that the prepared collagen peptides have good antioxidative activity. Altogether, these results indicate that the thermophilic TLP A69 has promising potential in the preparation of bioactive collagen peptides, which may have potentials in cosmetics, food and pharmaceutical industries. This study lays a foundation for the high-valued utilization of bovine bone collagen.


Asunto(s)
Anoxybacillus , Antioxidantes/farmacología , Colágeno/farmacología , Metaloendopeptidasas/química , Péptidos/farmacología , Animales , Antioxidantes/química , Bovinos , Colágeno/química , Péptidos/química
6.
PLoS One ; 14(3): e0214259, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30883605

RESUMEN

[This corrects the article DOI: 10.1371/journal.pone.0045412.].

7.
PLoS One ; 7(9): e45412, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23049798

RESUMEN

BACKGROUND: COMMD7 is a newly identified gene overexpressed in hepatocellular carcinoma (HCC) and associated with tumor invasion and poor prognosis. We aim to examine the biological function of COMMD7 in HCC by shRNA silencing. METHODS: COMMD7 expressions were examined in human HCC cell lines HepG2, Huh7, Hep3B, HLE, HLF, SK-Hep-1 and PLC/PRF/5 cells. Recombinant pGenesil-COMMD7-shRNA was transfected into COMMD7-abundant HepG2 cells to silence COMMD7 expression. The effects of COMMD7 silencing on HepG2 cell proliferation in vitro and xenograft tumor growth in vivo were evaluated. Flow cytometry profiling was used to detect the presence of apoptosis in COMMD7-silenced HepG2 cells and to differentiate cell cycle distribution. Electrophoretic mobility shift assay and luciferase reporter assays to examine the activities of nuclear factor-kappaB (NF-κB) signaling pathways in response to tumor necrosis factor (TNF)-α in COMMD7-silenced HepG2 cells. RESULTS: COMMD7 expression level was abundance in HepG2 and SK-Hep-1 cells. COMMD7 was aberrantly overexpressed in HepG2 cells, whilst pGenesil-COMMD7-shRNA exhibited a maximal inhibition rate of 75%. COMMD7 silencing significantly reduced HepG2 cell proliferation and colony formation. The knockdown of COMMD7 resulted in an increased apoptosis and cell cycle arrest at S-phase. COMMD7 knockdown also exhibited an antineoplastic effect in vivo, which manifested as tumor xenograft growth retardation. COMMD7 silencing also suppressed the responsiveness of NF-κB signaling pathway to the stimulation with TNF-α in vitro. Moreover, the similar suppressive effects of COMMD7 silence on SK-Hep-1 cells were also observed. CONCLUSIONS: COMMD7 contributes to HCC progression by reducing cell apoptosis and overcoming cell cycle arrest. The proliferative and antiapoptotic effects of COMMD7 may be mediated by NF-κB signaling pathway.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Apoptosis/genética , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , ARN Interferente Pequeño/genética , Proteínas Adaptadoras Transductoras de Señales/antagonistas & inhibidores , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Apoptosis/efectos de los fármacos , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Ciclo Celular/efectos de los fármacos , Ciclo Celular/genética , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Citometría de Flujo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Silenciador del Gen , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Ratones , FN-kappa B/genética , FN-kappa B/metabolismo , Trasplante de Neoplasias , Plásmidos , Proteínas Recombinantes de Fusión/antagonistas & inhibidores , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Transducción de Señal/efectos de los fármacos , Transfección , Carga Tumoral , Factor de Necrosis Tumoral alfa/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...